3.1.22 \(\int (a+a \cos (c+d x))^2 \sec ^5(c+d x) \, dx\) [22]

3.1.22.1 Optimal result
3.1.22.2 Mathematica [A] (verified)
3.1.22.3 Rubi [A] (verified)
3.1.22.4 Maple [A] (verified)
3.1.22.5 Fricas [A] (verification not implemented)
3.1.22.6 Sympy [F]
3.1.22.7 Maxima [A] (verification not implemented)
3.1.22.8 Giac [A] (verification not implemented)
3.1.22.9 Mupad [B] (verification not implemented)

3.1.22.1 Optimal result

Integrand size = 21, antiderivative size = 96 \[ \int (a+a \cos (c+d x))^2 \sec ^5(c+d x) \, dx=\frac {7 a^2 \text {arctanh}(\sin (c+d x))}{8 d}+\frac {2 a^2 \tan (c+d x)}{d}+\frac {7 a^2 \sec (c+d x) \tan (c+d x)}{8 d}+\frac {a^2 \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {2 a^2 \tan ^3(c+d x)}{3 d} \]

output
7/8*a^2*arctanh(sin(d*x+c))/d+2*a^2*tan(d*x+c)/d+7/8*a^2*sec(d*x+c)*tan(d* 
x+c)/d+1/4*a^2*sec(d*x+c)^3*tan(d*x+c)/d+2/3*a^2*tan(d*x+c)^3/d
 
3.1.22.2 Mathematica [A] (verified)

Time = 0.30 (sec) , antiderivative size = 58, normalized size of antiderivative = 0.60 \[ \int (a+a \cos (c+d x))^2 \sec ^5(c+d x) \, dx=\frac {a^2 \left (21 \text {arctanh}(\sin (c+d x))+\tan (c+d x) \left (21 \sec (c+d x)+6 \sec ^3(c+d x)+16 \left (3+\tan ^2(c+d x)\right )\right )\right )}{24 d} \]

input
Integrate[(a + a*Cos[c + d*x])^2*Sec[c + d*x]^5,x]
 
output
(a^2*(21*ArcTanh[Sin[c + d*x]] + Tan[c + d*x]*(21*Sec[c + d*x] + 6*Sec[c + 
 d*x]^3 + 16*(3 + Tan[c + d*x]^2))))/(24*d)
 
3.1.22.3 Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3042, 3236, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^5(c+d x) (a \cos (c+d x)+a)^2 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^5}dx\)

\(\Big \downarrow \) 3236

\(\displaystyle \int \left (a^2 \sec ^5(c+d x)+2 a^2 \sec ^4(c+d x)+a^2 \sec ^3(c+d x)\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {7 a^2 \text {arctanh}(\sin (c+d x))}{8 d}+\frac {2 a^2 \tan ^3(c+d x)}{3 d}+\frac {2 a^2 \tan (c+d x)}{d}+\frac {a^2 \tan (c+d x) \sec ^3(c+d x)}{4 d}+\frac {7 a^2 \tan (c+d x) \sec (c+d x)}{8 d}\)

input
Int[(a + a*Cos[c + d*x])^2*Sec[c + d*x]^5,x]
 
output
(7*a^2*ArcTanh[Sin[c + d*x]])/(8*d) + (2*a^2*Tan[c + d*x])/d + (7*a^2*Sec[ 
c + d*x]*Tan[c + d*x])/(8*d) + (a^2*Sec[c + d*x]^3*Tan[c + d*x])/(4*d) + ( 
2*a^2*Tan[c + d*x]^3)/(3*d)
 

3.1.22.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3236
Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*( 
x_)])^(m_.), x_Symbol] :> Int[ExpandTrig[(a + b*sin[e + f*x])^m*(d*sin[e + 
f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && IGt 
Q[m, 0] && RationalQ[n]
 
3.1.22.4 Maple [A] (verified)

Time = 2.93 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.17

method result size
derivativedivides \(\frac {a^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )-2 a^{2} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )+a^{2} \left (-\left (-\frac {\left (\sec ^{3}\left (d x +c \right )\right )}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}\) \(112\)
default \(\frac {a^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )-2 a^{2} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )+a^{2} \left (-\left (-\frac {\left (\sec ^{3}\left (d x +c \right )\right )}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}\) \(112\)
parts \(\frac {a^{2} \left (-\left (-\frac {\left (\sec ^{3}\left (d x +c \right )\right )}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}+\frac {a^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}-\frac {2 a^{2} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )}{d}\) \(117\)
risch \(-\frac {i a^{2} \left (21 \,{\mathrm e}^{7 i \left (d x +c \right )}+45 \,{\mathrm e}^{5 i \left (d x +c \right )}-96 \,{\mathrm e}^{4 i \left (d x +c \right )}-45 \,{\mathrm e}^{3 i \left (d x +c \right )}-128 \,{\mathrm e}^{2 i \left (d x +c \right )}-21 \,{\mathrm e}^{i \left (d x +c \right )}-32\right )}{12 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{4}}+\frac {7 a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{8 d}-\frac {7 a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{8 d}\) \(134\)
parallelrisch \(\frac {a^{2} \left (21 \left (-\cos \left (4 d x +4 c \right )-4 \cos \left (2 d x +2 c \right )-3\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+21 \left (\cos \left (4 d x +4 c \right )+4 \cos \left (2 d x +2 c \right )+3\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+32 \sin \left (4 d x +4 c \right )+90 \sin \left (d x +c \right )+128 \sin \left (2 d x +2 c \right )+42 \sin \left (3 d x +3 c \right )\right )}{24 d \left (\cos \left (4 d x +4 c \right )+4 \cos \left (2 d x +2 c \right )+3\right )}\) \(149\)
norman \(\frac {\frac {25 a^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d}+\frac {67 a^{2} \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d}-\frac {7 a^{2} \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 d}+\frac {25 a^{2} \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 d}+\frac {35 a^{2} \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d}-\frac {7 a^{2} \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{4}}-\frac {7 a^{2} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{8 d}+\frac {7 a^{2} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{8 d}\) \(186\)

input
int((a+cos(d*x+c)*a)^2*sec(d*x+c)^5,x,method=_RETURNVERBOSE)
 
output
1/d*(a^2*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+tan(d*x+c)))-2*a^2*( 
-2/3-1/3*sec(d*x+c)^2)*tan(d*x+c)+a^2*(-(-1/4*sec(d*x+c)^3-3/8*sec(d*x+c)) 
*tan(d*x+c)+3/8*ln(sec(d*x+c)+tan(d*x+c))))
 
3.1.22.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.16 \[ \int (a+a \cos (c+d x))^2 \sec ^5(c+d x) \, dx=\frac {21 \, a^{2} \cos \left (d x + c\right )^{4} \log \left (\sin \left (d x + c\right ) + 1\right ) - 21 \, a^{2} \cos \left (d x + c\right )^{4} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (32 \, a^{2} \cos \left (d x + c\right )^{3} + 21 \, a^{2} \cos \left (d x + c\right )^{2} + 16 \, a^{2} \cos \left (d x + c\right ) + 6 \, a^{2}\right )} \sin \left (d x + c\right )}{48 \, d \cos \left (d x + c\right )^{4}} \]

input
integrate((a+a*cos(d*x+c))^2*sec(d*x+c)^5,x, algorithm="fricas")
 
output
1/48*(21*a^2*cos(d*x + c)^4*log(sin(d*x + c) + 1) - 21*a^2*cos(d*x + c)^4* 
log(-sin(d*x + c) + 1) + 2*(32*a^2*cos(d*x + c)^3 + 21*a^2*cos(d*x + c)^2 
+ 16*a^2*cos(d*x + c) + 6*a^2)*sin(d*x + c))/(d*cos(d*x + c)^4)
 
3.1.22.6 Sympy [F]

\[ \int (a+a \cos (c+d x))^2 \sec ^5(c+d x) \, dx=a^{2} \left (\int 2 \cos {\left (c + d x \right )} \sec ^{5}{\left (c + d x \right )}\, dx + \int \cos ^{2}{\left (c + d x \right )} \sec ^{5}{\left (c + d x \right )}\, dx + \int \sec ^{5}{\left (c + d x \right )}\, dx\right ) \]

input
integrate((a+a*cos(d*x+c))**2*sec(d*x+c)**5,x)
 
output
a**2*(Integral(2*cos(c + d*x)*sec(c + d*x)**5, x) + Integral(cos(c + d*x)* 
*2*sec(c + d*x)**5, x) + Integral(sec(c + d*x)**5, x))
 
3.1.22.7 Maxima [A] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.51 \[ \int (a+a \cos (c+d x))^2 \sec ^5(c+d x) \, dx=\frac {32 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} a^{2} - 3 \, a^{2} {\left (\frac {2 \, {\left (3 \, \sin \left (d x + c\right )^{3} - 5 \, \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1} - 3 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 12 \, a^{2} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )}}{48 \, d} \]

input
integrate((a+a*cos(d*x+c))^2*sec(d*x+c)^5,x, algorithm="maxima")
 
output
1/48*(32*(tan(d*x + c)^3 + 3*tan(d*x + c))*a^2 - 3*a^2*(2*(3*sin(d*x + c)^ 
3 - 5*sin(d*x + c))/(sin(d*x + c)^4 - 2*sin(d*x + c)^2 + 1) - 3*log(sin(d* 
x + c) + 1) + 3*log(sin(d*x + c) - 1)) - 12*a^2*(2*sin(d*x + c)/(sin(d*x + 
 c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)))/d
 
3.1.22.8 Giac [A] (verification not implemented)

Time = 0.35 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.27 \[ \int (a+a \cos (c+d x))^2 \sec ^5(c+d x) \, dx=\frac {21 \, a^{2} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 21 \, a^{2} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (21 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 77 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 83 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 75 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{4}}}{24 \, d} \]

input
integrate((a+a*cos(d*x+c))^2*sec(d*x+c)^5,x, algorithm="giac")
 
output
1/24*(21*a^2*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 21*a^2*log(abs(tan(1/2*d 
*x + 1/2*c) - 1)) - 2*(21*a^2*tan(1/2*d*x + 1/2*c)^7 - 77*a^2*tan(1/2*d*x 
+ 1/2*c)^5 + 83*a^2*tan(1/2*d*x + 1/2*c)^3 - 75*a^2*tan(1/2*d*x + 1/2*c))/ 
(tan(1/2*d*x + 1/2*c)^2 - 1)^4)/d
 
3.1.22.9 Mupad [B] (verification not implemented)

Time = 16.99 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.47 \[ \int (a+a \cos (c+d x))^2 \sec ^5(c+d x) \, dx=\frac {7\,a^2\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{4\,d}-\frac {\frac {7\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{4}-\frac {77\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{12}+\frac {83\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{12}-\frac {25\,a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{4}}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+6\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )} \]

input
int((a + a*cos(c + d*x))^2/cos(c + d*x)^5,x)
 
output
(7*a^2*atanh(tan(c/2 + (d*x)/2)))/(4*d) - ((83*a^2*tan(c/2 + (d*x)/2)^3)/1 
2 - (77*a^2*tan(c/2 + (d*x)/2)^5)/12 + (7*a^2*tan(c/2 + (d*x)/2)^7)/4 - (2 
5*a^2*tan(c/2 + (d*x)/2))/4)/(d*(6*tan(c/2 + (d*x)/2)^4 - 4*tan(c/2 + (d*x 
)/2)^2 - 4*tan(c/2 + (d*x)/2)^6 + tan(c/2 + (d*x)/2)^8 + 1))